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Modern HPC systems are collecting large amounts of
I/O performance data. The massive volume and heterogene-
ity of this data, however, have made timely performance
of in-depth integrated analysis difficult. To overcome this
difficulty and to allow users to identify the root causes of
poor application I/O performance, we present IOMiner, an
I/O log analytics framework. IOMiner provides an easy-to-
use interface for analyzing instrumentation data, a unified
storage schema that hides the heterogeneity of the raw
instrumentation data, and a sweep-line-based algorithm for
root cause analysis of poor application I/O performance.
IOMiner is implemented atop Spark to facilitate efficient,
interactive, parallel analysis. We demonstrate the capabilities
of IOMiner by using it to analyze logs collected on a large-
scale production HPC system. Our analysis techniques not
only uncover the root cause of poor I/O performance in key
application case studies but also provide new insight into
HPC I/O workload characterization.

I. INTRODUCTION

Parallel I/O is a crucial component for handling massive
data movement on high-performance computing (HPC) sys-
tems. In an effort to characterize, understand, and eventually
optimize parallel I/O performance of applications, I/O logs
are captured at several stages of the I/O path. At the
application level, instrumentation tools such as Darshan [1],
[2] collect detailed I/O statistics. Darshan stores the data in a
write-optimized format; for example, each MPI job produces
a compressed binary log file. The number of Darshan logs
produced on production HPC systems each month depends
on the number of executed jobs1, and the data volume
ranges from hundreds of gigabytes to multiple terabytes.
File-system-monitoring tools, such as the Lustre Monitoring
Tool (LMT) [3], periodically gather I/O load on file system
servers and store the traces either in files or in databases. The
frequency of file system instrumentation is a few seconds,
resulting in tens of thousands of records per day. In addition,
job schedulers such as Slurm [4] can log millions of jobs’
resource utilization each month, such as the compute nodes
used and the jobs’ execution times.

An integrated analysis of all I/O instrumentation data
faces several challenges. First, instrumentation tools provide

1Without otherwise noted, “job” in our context refers to a program
execution.

ad hoc interfaces for data extraction, requiring tedious
manual effort in resolving their incompatibilities. Second,
instrumentation tools often store data in write-optimized
format, making analytics on such formats inefficient.

In general, analysis has relied on manually written scripts,
a time-consuming process with limited portability. Another
option is to load data into a database and apply SQL queries.
We have previously analyzed multilevel and multiplatform
I/O logs by loading data into a MySQL database [5].
However, the performance of data analytics can be limited
by the single database server and parallel databases on HPC
system are rarely installed.

As a step toward solving the challenges of analyzing
multilevel I/O instrumentation data that is massive in size
and heterogeneous, and allowing users to easily identify
the root causes of poor I/O performance from the complex
instrumentation data, we introduce the IOMiner framework.
The main components of IOMiner are an extensible set of
unified interfaces that can be used to compose common
I/O analysis operations on multilevel instrumentation data,
a query-friendly and unified storage schema that hides
the heterogeneity of different schema of instrumentation
data and is optimized for parallel analytics on HPC, and
a sweep-line-based [6] analysis function that helps users
easily identify the root causes for an application’s poor I/O
performance. The IOMiner framework is built on Apache
Spark [7], enabling interactive and ad hoc querying and
statistical analysis.

The main contributions of this paper are as follows.
• A set of unified interfaces that can be used to compose

the first-order and in-depth data analysis of different
types of instrumentation data

• A query-friendly and unified storage schema that fuses
together different instrumentation data and loads logs
on demand based on the analysis to be performed

• A layout-aware data placement and task-dispatching
framework for parallel data analytics using Spark. Both
data placement and task dispatching are specialized for
HPC storage architecture

• A sweep-line analysis function that helps identify the
root causes for an application’s poor I/O performance

We have evaluated IOMiner’s capabilities to support both
first-order and more in-depth analysis. Our analysis ranges
from the distribution of the sequential I/O, per job read/write
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ratio, and usage of the customized striping configuration,
to the usage of different I/O middleware and the composi-
tion of various file-sharing patterns. Our analysis provides
valuable insights for both system administrators and I/O
specialists. Our analyses with IOMiner also include the root
cause identification using the sweep-line technique for jobs
experiencing poor I/O bandwidth.

The remainder of the paper is organized as follows. We
present the IOMiner framework including the interfaces,
storage schema, Spark-based implementation, and approach
for analyzing the root causes of poor I/O performance in
Section II. In Section III, we evaluate IOMiner capabilities,
and in Section IV, we discuss related work. We conclude in
Section V with a brief discussion of future work.

II. DESIGN OF IOMINER

In this section, we first present the design of high-level
interfaces of IOMiner. We then outline IOMiner’s unified
storage schema for associating together various instrumen-
tation data. We also elaborate on the sweep-line-based
evaluation of applications’ low I/O performance.

A. Unified Query Interfaces for I/O Log Analytics
To simplify users’ effort and to make IOMiner flexible and

efficient for handling queries, we have designed IOMiner
with a set of interfaces applicable to different log types
(e.g., Darshan, Slurm, and LMT). These interfaces include
sort, group, filter, project, and join, which are all common
to SQL. IOMiner also provides additional operators (e.g.,
percentile and bin) that are often used for I/O log ana-
lytics. IOMiner further complements the functions of the
existing interfaces with support for user-defined functions,
thus allowing users to flexibly express complex queries. All
of these interfaces are layered on top of Spark, allowing the
output of one operator to be supplied as the input of another
operator using Spark RDD (resilient distributed dataset).

Algorithm 1 gives an overview of how to use IOMiner.
Line 14 returns a list of tuples containing the jobs whose
write sizes are smaller than 1 GB. This analysis is satisfied
by a pipeline of operators stitched together. In line 15,
the user-defined function classify workload bins each tuple
of job tuples based on bytes written (e.g., [0 − 1) GB
is workload 0, [1, 10) GB is workload 1, [10,∞) GB is
workload 2). These bin values are tagged to each element
in job tuples as a new field “workload.” In line 17, the
user-defined function calculate ost count accepts file tuples
grouped by job id and calculates the number of distinct
OSTs for each job. In line 19, the percentile operator sorts
selected tuples by bytes written and returns a percentile
list for bytes written. It answers queries like “What is the
distribution of write sizes across all the jobs?”

B. Query-Friendly Storage Schema
A unified set of query interfaces eases users’ effort

in defining analytic functions. Various challenges arise in

Algorithm 1: Example analysis code using IOMiner

1 # Instantiate an IOMiner instance
2 miner = IOMiner(“setup.json”)
3 # construct IOMiner’s storage format
4 miner.init stores(start date, end date)
5 # load Darshan’s job-level statistics as tuples
6 job tuples = miner.load(“darshan job”)
7 # load Darshan’s file-level statistics
8 file tuples = miner.load(“darshan file”)
9 # load Slurm job scheduler statistics

10 slurm tuples = miner.load(“slurm”)
11 # load Lustre Monitoring Tools (LMT) traces
12 lmt tuples = miner.load(“lmt”)
13 # filter jobs that write less than 1GB data and bin them
14 selected tuples = job tuples.project(“job id”,

“bytes written”).filter(“bytes written < 1GB”)
15 binned tuples = job tuples.bin(“workload”,

classify workload, “bytes written”)
16 # select a list of tuples containing each job’s ID and

the number of Lustre storage targets (OSTs) used
17 grouped tuples = file tuples.group(“job id”,

calculate ost count)
18 # generate a percentile list for Bytes Written
19 percents = job tuples.percentile(“bytes written”)
20 # return each job’s node count (in Slurm log) and and

write/read size (in Darshan log)
21 joined tuples = job tuples.join(slurm tuples,

“job id”).project(“job id”, “node count”,
“bytes read”, “bytes written”)

22 # return the jobs that write more than 10GB data
23 low bw tuples = job tuples.filter(“bytes written >

10GB”).join(file tuples, “job id”)
24 # extract contributing factors for poor write

performance
25 perf factors = low bw tuples.extract perf factors(“0”,

“1GB”, “write”)

providing efficient execution of these functions because of
distinct characteristics of instrumentation data. For example,
existing instrumentation tools generally provide vendor-
specific interfaces, and it is nontrivial to implement the
same function multiple times based on the interfaces of
each instrumentation tool. Moreover, the storage schema of
existing instrumentation tools are not designed to efficiently
support analytics and query patterns. Mining results from
their individual formats can incur heavy overheads. For
instance, Darshan produces one log file for each job, which
can be parsed by Darshan utility2 into a human-readable log
file containing both coarse-grained job-level statistics, such
as the total number of reads issued by all processes in the

2More information about “Darshan utility” is available at
http://www.mcs.anl.gov/research/projects/darshan/docs/darshan3-util.html
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Figure 1. Overview of IOMiner’s unified storage schema. Different tables
are connected to each other based on the fields in the same colors. Slurm
tables, LMT tables, and Darshan tables are representative of job scheduler
instrumentation, storage-server-side instrumentation, and application-level
instrumentation, respectively.

job, as well as fine-grained file-level statistics, such as the
total number of reads issued on each file. These two types of
statistics are stored in two different regions of the log file.
For a query that requires a scan of all job-level and file-
level statistics, an analysis framework has to open/close all
the jobs’ log files and to perform repeated seek operations
inside each log to extract all the requested information.
Answering this query incurs substantial metadata access
(with file open/close) and file seek overhead, since Darshan
can produce millions of logs in a month.

To address these challenges, we have designed a unified
storage schema that abstracts away the format difference be-
tween diverse instrumentation tools and is query-friendly. In
Figure 1, the statistics of different instrumentation tools are
formatted as tables and stored as separate files. Formatting
happens when the users instantiate an IOMiner instance and
invoke init stores to convert logs produced during a given
time period (Line 4 of Algorithm 1); only statistics in logs
of that period are extracted and reshaped into IOMiner’s
storage format. This formatting operation happens only once.
Later operations for the same time period will not repeat this
formatting process if these tables already exist. In Figure 1,
the formatted tables can be connected with each other based
on specific fields. For instance, the Slurm table contains
job statistics (e.g., number of cores/nodes used in a job)
supplementary to Darshan’s per job statistics, so tuples in
the Slurm table can be associated with Darshan tables using
job id. On the other hand, LMT tables contain the system-
wide read/write size for each OST during each 5-second
interval (see Figure 1); the Darshan file table also contains
the OST list for each file and the corresponding I/O timing.
Associating these two types of logs based on OSTs and I/O
time allows users to derive valuable insights, such as how
I/O operations on one file are interfered with by other I/O
operations being serviced on the same set of OSTs.

In order to avoid the excessive metadata access and
file seek overheads of using Darshan’s format, IOMiner
combines the job-level statistics of all Darshan logs into
a single table (Darshan job table in Figure 1). IOMiner

does the same for the file-level statistics and stores them
into a separate table (Darshan file table in Figure 1). All
tuples in these tables are ordered by job id. By extracting
the statistics from Darshan’s individual job logs and storing
them in two tables, a query based on a given condition (e.g.,
bytes written < 1GB) does not have to scan through
all the job logs and thus avoids the repeated open/close
overhead. On the other hand, separating the job-level and
file-level statistics into two tables more efficiently answers
the queries performed exclusively on job-level and file-level
statistics. For instance, answering a query that could be
satisfied by the job-level statistics does not have to scan
the file-level statistics if they are separated. In order to
accelerate analytics based on the file system (Lustre in this
case) information, IOMiner stores the list of storage targets
(Lustre OSTs) used for each file access as a bitmap (shown
in the Darshan file table in Figure 1). With this design
choice, users can easily calculate the OST count used by
each job by performing a union operation on all bitmaps of
its files. They can also find the OSTs used by a selected set
of jobs by performing intersection operations on the bitmaps
of each job.

C. Spark-based Implementation for HPC Environments

The storage schema mentioned in Section II-B is best
suited to running analytics operations using a single process,
since only one or two tables are constructed for each log type
(i.e., one for Slurm, two for Darshan, as shown in Figure 1).
However, supercomputers can run as many as millions of
jobs each month. Since Slurm and Darshan create one or
multiple long tuples for each job, mining useful information
from their tables using a single process is time-consuming.
To accelerate data analysis, IOMiner uses parallel processing
implemented with PySpark, a Python API for the Spark
framework. In PySpark, the driver process splits data into
multiple partitions and parallelizes data analytics by dis-
patching tasks to multiple executors. Since HPC adopts
a different storage architecture from the cloud computing
environment [8], where Spark is typically used, we have
designed a specialized data layout and task-dispatching
mechanism for Spark on HPC, which parallelizes the data-
loading operations from the storage servers (e.g., OST for
Lustre) in a layout-aware manner.

Figure 2 shows this data layout. The Darshan job table,
Darshan file table, and Slurm table are split into the same
number of subtables. Each subtable is placed on one OST
as a separate file, and IOMiner intentionally balances the
number of subtables on each OST. In doing so, it also places
Darshan files and Slurm files that contain the same set of
jobs on the same OSTs. For instance, in Figure 2, three
Slurm subtables, Darshan job subtables, and Darshan file
subtables belonging to Job [1–30] and [31–60] are placed
on OST1 and OST2, respectively. In this way, each OST
contains 9 subtables belonging to the same set of jobs, and
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Figure 2. Data distribution and task dispatching of Spark-based implemen-
tation for HPC. The Slurm table, Darshan job table, and Darshan file table
are partitioned into 6 subtables each; each subtable contains information
of 10 jobs. The Slurm table, Darshan job table, and Darshan file subtables
containing the same set of jobs are placed on the same OST.

a joining operator based on job id does not incur data traffic
on additional OSTs, isolating each executor’s traffic on one
OST without competing for other OST’s bandwidth.

When IOMiner is instantiated, the driver constructs a list
of data-loading tasks for all the executors and distributes
the tasks. These executors load data into their memory in
parallel (see Figure 2). Each task in the driver’s task list
contains the subtables to be dispatched to one executor. The
task list is created in a way that isolates each executor’s
load operations on one OST. This approach minimizes the
contention when multiple executors are competing for the
same set of OSTs. In Figure 2, Executors 1 and 2 need to
contact with only one OST, since all their assigned subtables
are placed on one OST. When the executor count is not same
as the OST count, IOMiner assigns subtables in a way that
either each OST is shared by a balanced and distinct set of
executors (Executor count > OST count) or each executor
isolates its traffic on a distinct set of OSTs (OST count >
Executor count).

D. Sweep-line-based Root Cause Analysis of Poor I/O Per-
formance

Analyzing an application’s poor I/O performance has been
a common effort of both the application developers and
the system administrators. However, existing approaches
are generally based on manual profiling; no easy approach
has been devised that can filter applications with poor-
I/O performance from a massive set of logs and provide
insightful feedback to the users.

To fill this void, we designed IOMiner to mine the
instances of poorly performing I/O from logs and to identify
how different contributing factors to performance are playing
a role: in Line 23-25 of Algorithm 1, the extract perf factors
function returns a list of tuples, where each tuple includes
the values of a set of key performance-contributing factors to
each job whose write bandwidth is between 0 and 1GB/s. We
currently consider the following five common contributing
factors in IOMiner.

• Small I/O requests (Small) – The percentage of small

I/O requests among all the I/O requests: A large number
incurs longer time for writing/reading data to/from
disks because of slow file seek performance.

• Nonconsecutive I/O requests (Non-consec) – The
percentage of noncontiguous I/O requests: I/O requests
that are not requesting consecutive byte streams result
in small and random I/O requests to the file system.

• Utilization of collective I/O (Coll): A value of 0 or 1
that indicates whether collective I/O has been used in
a job. A job using collective I/O typically optimizes
its read/write operations by transforming the small,
nonconsecutive I/O into fewer larger ones.

• Number of OSTs used by each job (OST#): The total
number of distinct OSTs used by a job. A large value
means that a job uses more storage resource.

• Contention level (Proc/OST): The ratio of the process
count accessing a file to the file’s stripe count. A high
value implies that a large number of processes are
competing for the same OSTs’ bandwidth.

While these factors are considered as the common reasons
for an application’s low I/O performance, we believe there
can be other contributing factors outside this scope, such as
bad OST performance caused by occasional device failure.
IOMiner is extensible to consider additional factors.

A key question is how to filter the low-bandwidth jobs
accurately and to compute the values of the contributing
factors. As one straightforward approach, we derive these
values based on Darshan’s job-level statistics (e.g., tuples in
the Darshan job table in Figure 1). For instance, we calculate
each job’s write bandwidth Bwrite using Equation 1, where
Swrite denotes the total bytes written by this job and
Twrite end and Twrite start are the completion time of the
last write and the start time of the first write, respectively.
All these values are available in the Darshan job table.

Bwrite = Swrite/(Twrite end − Twrite start) (1)

These write time measurements are too coarse-grained,
however, and we cannot accurately reflect the true write
bandwidth of the application. For instance, in Figure 3,

Time 
(s)

0 10 164 6 8 12 18

File1 (10, 20%)

File2 (2, 15%)
File4 (2, 10%)

File3 (0, 99%)

File(n) (Exclusive Time (s),   Small I/O Percent)

Figure 3. Schematic representation of the I/O timing of all the files in a
job. The critical path is marked in the red line, which is the period that has
I/O activity. Exclusive time is the non-overlapping I/O time for each file
that falls on the critical path.
processes in one job produce four files during different time
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slots. There is also an I/O idle period (between 12 s and 16
s on the x-axis). In this example, the write time reported by
Darshan is 18 s; however, the actual write time without the
idle time is 14 s. Consequently, this approach downplays the
true write bandwidth and can falsely mark a job as a low-
performance instance. Instead, we measure the write time
by looking at the timing on the critical path, defined as the
period that has I/O activity. In Figure 3, the critical path
includes 0 − −12 seconds and 16 − −18 seconds. To find
out the critical path, we introduce the concept of critical
files, defined as the minimum set of files whose I/O time
cover the critical path. In Figure 3, File1, File2, and File4
are the critical files. We further define exclusive time as the
non-overlapping portions of I/O time for the critical files.
In Figure 3, the exclusive times for File1, File2, and File4
are marked in red, and the lengths are 10 s, 2 s, and 2 s,
respectively. The total I/O time is derived by summing up
these exclusive times. Following this more accurate timing,
we calculate a small I/O percentage of these critical files
(Psmall) by Equation 2.

Psmall =

∑n
i=1 piti∑n
i=1 ti

(2)

In this equation, pi refers to the small I/O percentage of
Filei, ti refers to the exclusive time of Filei, and n is the
number of critical files. The resultant Psmall is an average
of all critical files’ pi weighted by their ratio of exclusive
time (ti) to the total I/O time (

∑n
i=1 ti). The value of

nonconsecutive I/O percentage, and OST contention levels
can be derived by using the same approach. The benefits
of this approach are threefold. First, it helps users precisely
filter the low-bandwidth jobs from all the analyzed jobs.
Second, it allows users to identify the potential causes for
a job’s low performance from the above contributing factor
values. Third, for those jobs whose performance does not
exhibit strong correlation with the calculated contributing
factor values, it provides a list of critical files, so that users
can identify the causes from these files’ I/O statistics.

A key question is how to extract the critical files and
their exclusive time. As a naive approach, one can determine
the critical files in n rounds of iterations. Each round adds
one critical file to the solution by comparing the timing of
all the files not in the solution. This approach gives O(n2)
complexity. Instead, we solve this problem more efficiently
(O(nlog(n))) using a sweep-line algorithm [6]. It is an
algorithmic paradigm in computational geometry. The idea
behind sweep line is to image a line swept across the whole
plane (e.g., the plane containing all the lines in Figure 3),
stopping at the points that have I/O activities (e.g., 0, 4, 6, 16
as I/O starts for a file, and 8, 10, 12, 18 as I/O ends), and
updating the critical paths and exclusive times upon each
activity. The complete solution is available once this line
reaches the final activity (e.g., 18 s in Figure 3). The solution
is shown in Algorithm 2.

Algorithm 2: Sweep-line-based poor I/O analytics
Input: file lst : the list of all the files in a job

Output: share lst : the list of time shares for each file

1 begin
2 for f in file lst do
3 points.add((f.start, f.name, type start))
4 points.add((f.end, f.name, type end))

5 sort points by time
6 for p in points do
7 if p.type == type start then
8 if heap.size() == 0 then
9 first = p

10 heap.push(p)

11 if p.type == type end then
12 heap.del(p)
13 if p.fname == first.fname then
14 share lst.add((first.fname, first.start,

p.end))
15 if heap.size() ! = 0 then
16 first = heap.peek()
17 first.start = p.end

Lines 2-4 show an iteration over all the files. Two tuples
are created for each file based on its start time and end time,
respectively. These points are sorted in an ascending order
based on their times (Line 5). Then the algorithm sweeps
through all these points (Line 6-17) to add each encountered
point of type “start” (referred to as start point) to a heap
(Line 10) and to remove it from a heap when its counterpart
end point is encountered (Line 12). In doing so, the time
range of all stashed points in the heap dynamically changes.
For the scenario shown in Fig. 3, when File1’s start point is
added first, the current time range is 0 to 10. When File3’s
start point is added next, the range remains as 0 to 10
because File3’s range is 4 to 8, which is a subset of the
current range. When File2 is added, the range is adjusted to
0 to 12 based on File2’s range (6 to 12). We can see that
the end of the current range varies as new start points are
encountered, just like an expanding sweep line. When an
end point is encountered (Line 11), its file name is matched
with the first start point (first in Line 9) that joins the sweep
line (Line 13), if they belong to the same file, this file’s
exclusive time is added to the output list (Line 14), and the
sweep line is reset by selecting a top point from the heap as
the first point of the new sweep line (Line 16), and setting its
start time as the current time suggested by p.end (Line 17).
In Fig. 3, File1 ends at 10; it is added to the output list
as (File1, 0, 10). At this point, File2 is the only file in the
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heap (File3 already ends at 8). File2’s entry is selected from
the heap and becomes the first of the sweep line. With this
algorithm, (File2, 10, 12) and (File4, 16, 18) are added to
the output list subsequently.

III. EVALUATION

In this section, we evaluate IOMiner’s support for vari-
ous types of analysis. We ran a large number of analysis
tasks, but because of the page limit we present only a
few interesting results. We use IOMiner to perform simple
analysis tasks that can be accomplished by grouping, sorting,
filtering, and projection operations, and in-depth analysis
that can be answered by grouping/binning with the user-
defined functions. We also discuss our use of IOMiner to
find root causes of an application’s poor I/O performance.

A. Experimental Setup

We ran IOMiner on the Cray XC40 system Cori at
the National Energy Research Scientific Computing Center
(NERSC) to analyze the I/O performance logs collected
on the same system. Cori consists of two partitions: one
has ≈2,400 nodes with Intel Xeon “Haswell” processors,
and another has ≈9,700 Intel Xeon Phi “Knights Landing”
(KNL) processors. Cori has several different user-accessible
file systems, including a disk-based Lustre system, an SSD-
based burst buffer, and a disk-based GPFS file system.

Our analyses were performed on the logs produced by the
application-level Darshan profiling tool, Slurm job sched-
uler, and storage server-side Lustre Monitoring Tool LMT.
We analyzed the logs generated across the entire month of
Jan. 2018. Overall, analysis on LMT shows an aggregate
read/write traffic of 42 PB on the storage servers. The
analysis on Slurm logs indicates an aggregate of 98 million
core-hours from 3.15 million successfully completed jobs.
Our analyzed Darshan logs cover 9.4% of the I/O traffic
from LMT logs and 20.2% of CPU-hours from Slurm logs,
accounting for 0.45 million of the total jobs considered.

B. Performance of IOMiner

In our first experiment, we demonstrate the execution
time of IOMiner in retrieving results to answer “How many
jobs use customized stripe configuration?” To answer this
question, IOMiner selects all the jobs using Lustre and scans
across all the files in each job to determine whether their
stripe size, stripe count, and stripe offset are the same as the
Lustre’s default setting (1048576, 1, and −1, respectively,
for the three parameters).

Figure 4 shows IOMiner’s execution times with a varying
executor count. We place two executors on each node to
leverage its NUMA architecture. We observe that IOMiner
performs the best with 32 executors, with 18× speedup
over the single-executor case. We also note that increasing
executors beyond 32 does not scale, mainly because the
data size per executor becomes smaller and communication

overhead between the driver and the executors becomes a
dominant factor. We have also measured the performance
of extracting data directly from Darshan’s own log format
using one process, answering this query involves opening,
closing and scanning each log for the stripe information,
which could not finish in our requested wall time limit (6
hours).
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Figure 4. Performance of Spark-based IOMiner. m(n): m executors on n
nodes.

C. First-Order statistics

The results suggest that only 0.08% of jobs adopt a
customized stripe setting. This observation raises a concern
for those common I/O workloads (i.e., N-1 and N-M in
Section III-D) that involve multiple processes concurrently
writing/reading the shared files. With a default stripecount
of 1, all processes sharing the same file are bottlenecked
by the bandwidth of a single OST. Despite this, other HPC
centers have reported low rates of custom stripe settings [9].

We performed a set of first-order statistical analyses to
provide examples of IOMiner’s capabilities. We discuss new
observations in I/O analysis using these analytics.
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Figure 5. Top-ten read-intensive applications.

1) Top I/O-intensive applications: The top I/O-intensive
applications are of particular interest to the I/O specialists in
optimizing applications’ I/O performance and to file system
designers in dealing with peak application I/O workloads.
We leverage IOMiner to select the top most read- and
write-intensive applications by grouping these jobs based
on executable names of applications and then calculating the
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Figure 6. Top-ten write-intensive applications.

aggregate read/write sizes for all jobs in each application and
ranking them by their aggregate bytes read/written. Figures 5
and 6 show the applications and their aggregate read/write
sizes. We have anonymized the applications using their
science area. Overall, these top ten I/O-intensive applications
consume 72% and 76% of the entire read and write traffic
captured by Darshan, respectively.
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Figure 7. Distribution of sequential I/O percent among jobs.

2) Distribution of sequential I/O: Sequential I/O is a
friendly I/O pattern for the disk-based file systems and the
SSD-based burst buffers. In this pattern, an I/O request
issued by a process immediately accesses the end byte of the
previous I/O operation. I/O bandwidth can be enhanced by
aggregating multiple consecutive writes/reads, which may be
smaller than a file system page size, into fewer accesses. To
analyze how many HPC applications can benefit from such
optimization, we define the ratio of sequential I/O Pseq as
Equation 3, where Nseq and Ntot refer to the number of
sequential I/O requests and the total reads/writes count in
each job. We then calculate the percentile of Pseq and plot
its cumulative distribution, as shown in Figure 7. In this
figure, each point on the x-axis represents the percentile of
jobs whose Pseq is below its value on the y-axis. We can see
that only close to 10% of jobs’ Pseq are below 50%; in other
words, 90% of jobs’ Pseq are above 50%. In addition, we
see that almost half of the jobs’ Pseq are above 80%. This
observation implies that sequential I/O is highly prevalent in
the HPC I/O workloads and that further I/O optimizations

such as I/O aggregation can improve I/O performance.

Pseq = Nseq/Ntot (3)
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Figure 8. Distribution of read ratio among jobs.

3) Distribution of the read ratio: Checkpointing has
been considered as a dominating I/O workload on HPC
systems [10], [11], [12], [13]. For this reason, the majority of
I/O optimization efforts focus on accelerating checkpointing,
a workload featured by bursty writes. In contrast, read
optimization has received relatively less attention. However,
it remains unknown whether read optimization deserves
more effort. To answer this question, we define the read
ratio as Equation 4, where Bread and Bwrite refer to the
total bytes read and written by each job, respectively. We
then bin the jobs based on their Pread into 100 percentiles,
and we calculate the job counts in each bin. As can be
seen from Figure 8, although a substantial fraction of jobs
is either write-only (7% with Pread = 0) or read-only
(23% with Pread = 100), the majority of jobs are featured
with a mixed workload. In addition, there is a burst of
jobs with Pread > 90%, accounting for 53% of the total
job count. This analysis informs us that further studies and
optimizations on read are worth the investment.

Pread =
Bread

Bwrite +Bread
(4)

D. I/O pattern analysis
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N-N and N-1 are considered as two primary I/O patterns
of HPC parallel applications [14]. In the N-N pattern, each
process (typically, an MPI process) writes/reads a private
file. In the N-1 pattern, all the processes concurrently access
the same shared file. Many widely adopted I/O benchmarks
have been designed to emulate these I/O patterns [15], [16].
However, the distribution of I/O pattern usage in parallel
applications running on the production HPC systems is an
open question. To answer this, we define the file-sharing
ratio (R) in Equation 5, where P is the process count in
a job and F is file count in the job. We use IOMiner to
provide a histogram of the job counts based on R, as shown
in Figure 9. Note that in the Figure, N-1 case includes the
scenario when a list of shared files is accessed by a job,
each read/written by all the processes within a distinct time
step. We have also excluded the jobs using only one process,
which belong to both N-1 and N-N patterns.

R = P/F (5)

We can see that N-N and N-1 jobs constitute only a small
percentage of all the jobs. In contrast, most jobs exhibit the
N-M pattern, where either each file is shared by a subset
of processes (1 < M < N ) or one process works on
multiple files (M > N ). This observation suggests that
existing benchmarks can be adapted to a wider spectrum
of file-sharing patterns to more accurately capture the real
I/O behavior of the application.

E. I/O middleware usage analysis

POSIX-IO and MPI-IO have been predominant I/O mid-
dleware used for performing parallel I/O. MPI-IO [17]
has been developed for roughly two decades to optimize
I/O in MPI applications. Its collective I/O optimization,
where a small set of MPI processes act as aggregators for
performing larger I/O requests to improve performance, is a
key optimization method. High-level I/O libraries, such as
HDF5 [18] and PnetCDF [19], [20], are built on top of MPI-
IO to take advantage of various optimizations. While these
libraries are efficient for enhancing applications’ I/O perfor-
mance, it remains unknown how many applications actually
use them in production. In this study, we use IOMiner to
bin the jobs based on process count, and we calculate the
job count using POSIX I/O, MPI-IO in independent mode,
and MPI-IO with collective optimizations.

We group four types of jobs based on the process count:
MPI jobs using one process (denoted as One); using 2
to 1,024 processes (Small); using 1,025 to 8192 processes
(Medium); and using more than 8,192 processes (Large). As
shown in Figure 10, among the Darshan logs we evaluated,
POSIX I/O is used by 98.8% and 99.6% by single-process
(One) and Small jobs, respectively. Although there is a
higher use of MPI-IO usage in Medium (22.2%) and Large
(45.9%) jobs compared with Small jobs, POSIX-IO remains
as the most-used I/O interface. Collective I/O optimizations

are enabled in most of the MPI-IO jobs. This situation is
probably because of the use of HDF5, the most common
parallel I/O library used by the applications on Cori, where
collective I/O is enabled. Overall, we can see that although
MPI-IO has been a long-standing interface, most HPC users
are still committed to POSIX I/O. As I/O specialists spend
more effort on the future I/O stacks for exascale computing,
one of the challenges is to persuade POSIX-IO users to use
the new I/O techniques.
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F. Root Cause Analysis of the Low I/O bandwidth Jobs

While data-intensive applications running at large scale
often can obtain good I/O performance, factors such as
I/O pattern, number of I/O requests, and number of storage
targets used can affect the sustained performance. To identify
the root causes of applications’ low I/O performance, we
have used IOMiner in analyzing the logs of jobs using more
than 1,000 processes, where each process was writing/read-
ing at least 10 MB of data, and the aggregate sustained
I/O bandwidth was lower than 1 GB/s. We then analyzed
the root causes of these jobs’ poor I/O bandwidth using the
techniques described in Section II-D. The filtering condition
returns records pertaining to 251 low-read-bandwidth jobs
from 17 applications and to 724 low-write-bandwidth jobs
from 16 applications. We show these applications and values
of various factors contributing to the I/O performance as
parallel coordinate plots [21] in Figures 11 and 12. In these
figures, different colors represent different applications. For
instance, in Figure 11, we can see that 140 out of 251 jobs
are in blue, and they belong to application 10. Since the
bandwidth of a job may also be limited by the use of a
single node, and the node count information for each job
is recorded in a Slurm scheduler log, we also extract this
information by joining the Slurm table with the Darshan
table (shown as Node#). We found that many jobs experience
a contention level (Proc/OST) larger than 3 (e.g. 56 jobs
for read, and 395 jobs for write). Further investigation of
the I/O logs of these applications revealed their use of
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default Lustre stripe setting of one OST, causing many
processes to concurrently write/read a shared file using the
OST, with a resulting bottleneck of the bandwidth on this
OST. On the other hand, the impact of collective, small,
nonconsecutive I/O and OST count is less perceivable since
their values are randomly distributed across their x-axis.
We have also analyzed the well-performing jobs whose
bandwidth is beyond 20 GB/s (not shown due to the space
limit) and were not able to discover a regular trend among
those contributing factors either. These observations inform
us that the root causes for jobs’ low I/O performance can
be a synergistic effect of multiple contributing factors and
thus warrant further analysis of application I/O logs.

Figure 11. Impact of contributing factors to low-read-bandwidth jobs.
Small, Nonconsec, Coll, OST#, and Proc/OST Level refer to the contribut-
ing factors defined in Section II-D, respectively. Node# refers to the number
of nodes used by the job. Size refers to the aggregate read size for each
job. BW refers to the aggregate bandwidth for each job. App No. refers
to the numbering of applications. Job No. refers to the numbering of jobs.
Multiple jobs can belong to the same application.

Figure 12. Impact of contributing factors to low-write-bandwidth jobs.

To further investigate the root causes for the individual
applications, we select the low-bandwidth jobs that use
all the system’s OSTs (248), and we classify them based
on their applications. Tables I and II list the contributing
values for the low-read-bandwidth and low-write-bandwidth

Table I
CONTRIBUTING FACTOR VALUES FOR LOW-READ-BANDWIDTH

APPLICATIONS WITH ALL OSTS UTILIZED.

App Small(%) Non-consec(%) Coll(%) Proc/OST
Meteorology1 53 53 0 25
Physics1 44 6 0 1
Climate1 71 98 0 100
Quantum1 99 0 0 1

applications, respectively. One can see that jobs belonging to
the same applications (same color) generally share similar
contributing factor values, so we present the contributing
factors of one representative job for each application. The
only exception is Physics1 in Table II, where all these
jobs share two different sets of contributing factor values
(Physics1.1 and Physics1.2).

In Table II, we find that the small-write-percentage of
Physics1.1, Physics1.2, and Chemistry1 all stay
at high values (> 50%). However, we cannot conclude
that small writes are the culprit; their writes are mostly
consecutive. These small and consecutive writes give the
operating system ample opportunity to aggregate the small
writes into larger ones. To more precisely find out the
causes, we used a sweep-line algorithm (shown in Algo-
rithm 2) to analyze the timing of writing individual files
on the critical path. It turns out that the root reason for
low performance of Physics1.1 is that its I/O time is
bottlenecked by all processes (1,024) writing to one large file
on only one OST. The low performance of Physics1.2
and that of Chemistry1 is because the root process writes
significantly more data than do the other MPI processes,
dominating the write time on critical path. On the other hand,
we have also observed that all these contributing factors stay
low for App1. Using Algorithm 2, we find that the long I/O
time of App1 is because of files being written intermittently
and their write times are not well overlapped with each other.
Synchronization also may occur between writing different
files, contributing to poor I/O performance.

In Table I, we see that the read bandwidths of
Meteorology, Climate1, and Quantum1 are impacted
by one or multiple factors. For instance, we observe
a large percentage of small and nonconsecutive I/O in
Meteorology1 and Climate1 (> 50%), which is the
primary reason for the two applications’ low read bandwidth.
However, we also find that Physics1 is an exception,
where all the factors stay at low values. Using Algorithm 2,
we observe that reading one file takes up 95% of the total
read time on the critical path. These types of root causes
could provide sufficient evidence to system administrators at
supercomputing facilities for communicating with the users
and application developers.
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Table II
CONTRIBUTING FACTOR VALUES FOR LOW-WRITE-BANDWIDTH

APPLICATIONS WITH ALL OSTS UTILIZED.

App Small(%) Non-consec(%) Coll(%) Proc/OST
App1 29 17 0 1
Physics1.1 98 0 0 848
Physics1.2 98 0 0 1
Chemistry1 76 2 0 1

G. Discussion

Our analysis of the I/O logs on the Cori system at NERSC
using IOMiner provides multiple insights. First, read/write
traffic on HPC is dominated by only a few applications
(Section III-C1), and most applications predominately use
sequential I/O (Section III-C2). File system and middleware
developers can pay special attention to these top data-
intensive applications’ I/O demands and be open to the
techniques that boost the sequential I/O bandwidth, such
as I/O aggregation. Second, we have identified several
directions that are worth further investigation. For instance,
read workloads are as common as write workloads (Sec-
tion III-C3); and optimizations on applications’ read perfor-
mance, such as data reorganization and caching, can bring
significant benefits. POSIX I/O is still the most widely used
I/O middleware (Section III-E); hence next-generation I/O
stack designs must take into consideration whether POSIX
consistency is a real requirement. Since N-M pattern is the
most common file-sharing pattern on HPC systems (Sec-
tion III-D), benchmarks have to be developed to represent
this pattern. Furthermore, our root-cause analysis suggests
that the reasons for applications’ poor I/O performance can
be diverse, either as a result of the synergistic effects of
the contributing factors discussed in Section II-D or other
factors beyond this scope. With the help of the sweep-line
algorithm, HPC users can locate one or multiple bottleneck
files on the critical path and find out the root causes for poor-
I/O-performance by looking only at these files’ statistics.
IOMiner provides an extensible and flexible framework to
filter a massive number of logs as well as to sift through
individual application traces.

IV. RELATED WORK

Tracing I/O activity and analyzing the traces has been
one of the most prominent techniques for characterizing I/O
performance. A limitation of the existing I/O tracing and
their performance tools is that the analysis of the traces
and statistics and the identification of any performance
problems have to be performed manually. Such efforts
require expertise in parallel I/O systems. Luu et al. [5]
have analyzed a large number of Darshan logs collected at
multiple supercomputing facilities and summarized that most
applications obtain significantly lower I/O performance than
the peak capability, and that several applications do not even
use parallel I/O libraries. Besides these work on application-
level analysis [22], [23], [24], there are numerous work

on file system level characterization [25], [26], [27], [28],
[29], [30]. These efforts were generally performed manually,
and focus on a single level I/O traces, conducting a similar
analysis would require significant effort.

pytokio [31] is software facilitating holistic characteriza-
tion and analysis of multi-level I/O traces. It defines abstract
connectors to various monitoring tools, and allows users
to extract data from these sources using these connectors.
Though both pytokio and IOMiner support analytics on
multi-level I/O traces, IOMiner differs in that it is designed
for large-scale parallel analytics. GUIDE [32] is another
framework for analyzing multi-level I/O traces, different
from GUIDE, IOMiner focuses more on applications’ I/O
behavior and their performance impact, which is useful for
both the facility operators and the application developers,
while GUIDE targets to deliver system-level statistics to
the facility operators, such as the file system workload, the
network traffic, etc.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a holistic I/O analysis frame-
work called IOMiner. IOMiner provides unified interfaces
and read-friendly storage schema for users to perform an
integrated analysis on different types of instrumentation
data, such as application and file-system-level logs and job
scheduler logs. The whole framework is built on top of
Spark and is optimized for parallel queries of HPC storage.
Furthermore, IOMiner allows users to conveniently identify
the root causes for an application’s poor I/O performance
based on a sweep-line algorithm. Our analysis provides
several novel insights for HPC users and demonstrates that
the root causes for an application’s low I/O performance can
be diverse. As future work, we will extend IOMiner with the
ability to intelligently learn the new contributing factors for
low I/O performance, identify the list of contributing factors
that synergistically account for the low performance, and
perform system-wide application I/O diagnostics. We will
also provide support for more types of I/O instrumentation
data under our framework. For instance, ggiostat [33] is a
monitoring tool for the GPFS [34] file system. It could be
integrated into IOMiner framework in the same way as LMT.
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